C語(yǔ)言實(shí)現(xiàn)圖的遍歷之深度優(yōu)先搜索實(shí)例
DFS(Depth-First-Search)深度優(yōu)先搜索算法是圖的遍歷算法中非常常見(jiàn)的一類算法。分享給大家供大家參考。具體方法如下:
#include <iostream> #include <algorithm> #include <iterator> using namespace std; #define MAX_VERTEX_NUM 10 struct Node { int adjvex; struct Node *next; int info; }; typedef struct VNode { char data; Node *first; }VNode, AdjList[MAX_VERTEX_NUM]; struct Graph { AdjList vertices; int vexnum, arcnum; }; int visited[MAX_VERTEX_NUM]; int locateVex(Graph G, char u) { int i; for (i = 0; i < G.vexnum; i++) { if (u == G.vertices[i].data) return i; } if (i == G.vexnum) { printf("Error u!\n"); exit(1); } return 0; } void createGraph(Graph &G) { int i, j, k, w; char v1, v2, enter; Node *p; printf("input vexnum & arcnum:\n"); scanf("%d", &G.vexnum); scanf("%d", &G.arcnum); printf("input vertices:\n"); for (i = 0; i < G.vexnum; i++) { scanf("%c%c", &enter, &G.vertices[i].data); G.vertices[i].first = NULL; } printf("input Arcs(v1, v2, w):\n"); for (k = 0; k < G.arcnum; k++) { scanf("%c%c", &enter, &v1); scanf("%c%c", &enter, &v2); scanf("%d", &w); i = locateVex(G, v1); j = locateVex(G, v2); p = (Node *)malloc(sizeof(Node)); p->adjvex = j; p->info = w; p->next = G.vertices[i].first; G.vertices[i].first = p; } } void DFS(Graph &G, int v) { Node *p; printf("%c", G.vertices[v].data); visited[v] = 1; p = G.vertices[v].first; while (p) { if (!visited[p->adjvex]) DFS(G, p->adjvex); p = p->next; } } void DFSTranverse(Graph &G) { for (int v = 0; v < G.vexnum; v++) visited[v] = 0; for (int v = 0; v < G.vexnum; v++) { if (!visited[v]) DFS(G, v); } } int main() { Graph G; createGraph(G); DFSTranverse(G); }
再換一種方式來(lái)寫(xiě)DFS。具體代碼如下:
#include <iostream> #include <string> using namespace std; #define MAXLEN 10 struct Node { int data; Node *next; }; struct Link { int count; string name; Node *head; }; struct Graph { Link link[MAXLEN]; int vexnum; int arcnum; }; int findIndex(Graph &G, string name) { int index = -1; for (int i = 0; i < G.vexnum; i++) { if (G.link[i].name == name) { index = i; break; } } if (index == -1) cout << "error" << endl; return index; } void constructGraph(Graph &G) { cout << "construct graph yooo" << endl; cout << "enter vexnum" << endl; cin >> G.vexnum; string array[] = {"v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8"}; const int size = sizeof array / sizeof *array; for (int i = 0; i < G.vexnum; i++) { G.link[i].name = array[i]; G.link[i].head = NULL; } string leftName; string rightName; cout << "enter a pair" << endl; cin >> leftName >> rightName; while (leftName != "end" && rightName != "end") { int leftIndex = findIndex(G, leftName); int rightIndex = findIndex(G, rightName); Node *node = new Node; node->data = rightIndex; node->next = NULL; node->next = G.link[leftIndex].head; G.link[leftIndex].head = node; cout << "enter a pair" << endl; cin >> leftName >> rightName; } } bool flag[MAXLEN]; void DFSTranverse(Graph &G, int num) { cout << G.link[num].name << " "; flag[num] = true; Node *head = G.link[num].head; while (head != NULL) { int index = head->data; if (!flag[index]) DFSTranverse(G, index); head = head->next; } } void main() { Graph G; constructGraph(G); for (int i = 0; i < MAXLEN; i++) flag[i] = false; DFSTranverse(G, 0); }
DFS的迭代遍歷算法如下:
void DFS(Graph &G) { stack<int> istack; istack.push(0); cout << G.link[0].name << " "; flag[0] = true; while (!istack.empty()) { int index = istack.top(); Node *head = G.link[index].head; while (head != NULL && flag[head->data] == true) head = head->next; if (head != NULL) { index = head->data; if (!flag[index]) { cout << G.link[index].name << " "; flag[index] = true; istack.push(index); } } else istack.pop(); } }
感性的朋友可以測(cè)試運(yùn)行一下本文實(shí)例代碼以加深印象,相信本文所述對(duì)大家C程序算法設(shè)計(jì)的有一定的借鑒價(jià)值。
欄 目:C語(yǔ)言
下一篇:C語(yǔ)言實(shí)現(xiàn)最大間隙問(wèn)題實(shí)例
本文標(biāo)題:C語(yǔ)言實(shí)現(xiàn)圖的遍歷之深度優(yōu)先搜索實(shí)例
本文地址:http://mengdiqiu.com.cn/a1/Cyuyan/3364.html
您可能感興趣的文章
- 04-02c語(yǔ)言函數(shù)調(diào)用后清空內(nèi)存 c語(yǔ)言調(diào)用函數(shù)刪除字符
- 04-02c語(yǔ)言的正則匹配函數(shù) c語(yǔ)言正則表達(dá)式函數(shù)庫(kù)
- 04-02func函數(shù)+在C語(yǔ)言 func函數(shù)在c語(yǔ)言中
- 04-02c語(yǔ)言中對(duì)數(shù)函數(shù)的表達(dá)式 c語(yǔ)言中對(duì)數(shù)怎么表達(dá)
- 04-02c語(yǔ)言用函數(shù)寫(xiě)分段 用c語(yǔ)言表示分段函數(shù)
- 04-02c語(yǔ)言編寫(xiě)函數(shù)冒泡排序 c語(yǔ)言冒泡排序法函數(shù)
- 04-02c語(yǔ)言沒(méi)有round函數(shù) round c語(yǔ)言
- 04-02c語(yǔ)言分段函數(shù)怎么求 用c語(yǔ)言求分段函數(shù)
- 04-02C語(yǔ)言中怎么打出三角函數(shù) c語(yǔ)言中怎么打出三角函數(shù)的值
- 04-02c語(yǔ)言調(diào)用函數(shù)求fibo C語(yǔ)言調(diào)用函數(shù)求階乘


閱讀排行
- 1C語(yǔ)言 while語(yǔ)句的用法詳解
- 2java 實(shí)現(xiàn)簡(jiǎn)單圣誕樹(shù)的示例代碼(圣誕
- 3利用C語(yǔ)言實(shí)現(xiàn)“百馬百擔(dān)”問(wèn)題方法
- 4C語(yǔ)言中計(jì)算正弦的相關(guān)函數(shù)總結(jié)
- 5c語(yǔ)言計(jì)算三角形面積代碼
- 6什么是 WSH(腳本宿主)的詳細(xì)解釋
- 7C++ 中隨機(jī)函數(shù)random函數(shù)的使用方法
- 8正則表達(dá)式匹配各種特殊字符
- 9C語(yǔ)言十進(jìn)制轉(zhuǎn)二進(jìn)制代碼實(shí)例
- 10C語(yǔ)言查找數(shù)組里數(shù)字重復(fù)次數(shù)的方法
本欄相關(guān)
- 04-02c語(yǔ)言函數(shù)調(diào)用后清空內(nèi)存 c語(yǔ)言調(diào)用
- 04-02func函數(shù)+在C語(yǔ)言 func函數(shù)在c語(yǔ)言中
- 04-02c語(yǔ)言的正則匹配函數(shù) c語(yǔ)言正則表達(dá)
- 04-02c語(yǔ)言用函數(shù)寫(xiě)分段 用c語(yǔ)言表示分段
- 04-02c語(yǔ)言中對(duì)數(shù)函數(shù)的表達(dá)式 c語(yǔ)言中對(duì)
- 04-02c語(yǔ)言編寫(xiě)函數(shù)冒泡排序 c語(yǔ)言冒泡排
- 04-02c語(yǔ)言沒(méi)有round函數(shù) round c語(yǔ)言
- 04-02c語(yǔ)言分段函數(shù)怎么求 用c語(yǔ)言求分段
- 04-02C語(yǔ)言中怎么打出三角函數(shù) c語(yǔ)言中怎
- 04-02c語(yǔ)言調(diào)用函數(shù)求fibo C語(yǔ)言調(diào)用函數(shù)求
隨機(jī)閱讀
- 01-11ajax實(shí)現(xiàn)頁(yè)面的局部加載
- 01-11Mac OSX 打開(kāi)原生自帶讀寫(xiě)NTFS功能(圖文
- 08-05dedecms(織夢(mèng))副欄目數(shù)量限制代碼修改
- 01-10C#中split用法實(shí)例總結(jié)
- 04-02jquery與jsp,用jquery
- 01-10SublimeText編譯C開(kāi)發(fā)環(huán)境設(shè)置
- 01-10delphi制作wav文件的方法
- 01-10使用C語(yǔ)言求解撲克牌的順子及n個(gè)骰子
- 08-05DEDE織夢(mèng)data目錄下的sessions文件夾有什
- 08-05織夢(mèng)dedecms什么時(shí)候用欄目交叉功能?