C#中OpenCvSharp 通過特征點(diǎn)匹配圖片的方法
現(xiàn)在的手游基本都是重復(fù)操作,一個(gè)動(dòng)作要等好久,結(jié)束之后繼續(xù)另一個(gè)動(dòng)作.很麻煩,所以動(dòng)起了自己寫一個(gè)游戲輔助的心思.
這個(gè)輔助本身沒什么難度,就是通過不斷的截圖,然后從這個(gè)截圖中找出預(yù)先截好的能代表相應(yīng)動(dòng)作的按鈕或者觸發(fā)條件的小圖.
找到之后獲取該子區(qū)域的左上角坐標(biāo),然后通過windows API調(diào)用鼠標(biāo)或者鍵盤做操作就行了.
這里面最難的也就是找圖了,因?yàn)橐珳?zhǔn)找圖,而且最好能適應(yīng)不同的分辨率下找圖,所以在模板匹配的基礎(chǔ)上,就有了SIFT和SURF的特征點(diǎn)找圖方式.
在寫的過程中查找資料,大都是C++ 或者python的, 很少有原生的C#實(shí)現(xiàn), 所以我就直接拿來翻譯過來了(稍作改動(dòng)).
SIFT算法
public static Bitmap MatchPicBySift(Bitmap imgSrc, Bitmap imgSub) { using (Mat matSrc = imgSrc.ToMat()) using (Mat matTo = imgSub.ToMat()) using (Mat matSrcRet = new Mat()) using (Mat matToRet = new Mat()) { KeyPoint[] keyPointsSrc, keyPointsTo; using (var sift = OpenCvSharp.XFeatures2D.SIFT.Create()) { sift.DetectAndCompute(matSrc, null, out keyPointsSrc, matSrcRet); sift.DetectAndCompute(matTo, null, out keyPointsTo, matToRet); } using (var bfMatcher = new OpenCvSharp.BFMatcher()) { var matches = bfMatcher.KnnMatch(matSrcRet, matToRet, k: 2); var pointsSrc = new List<Point2f>(); var pointsDst = new List<Point2f>(); var goodMatches = new List<DMatch>(); foreach (DMatch[] items in matches.Where(x => x.Length > 1)) { if (items[0].Distance < 0.5 * items[1].Distance) { pointsSrc.Add(keyPointsSrc[items[0].QueryIdx].Pt); pointsDst.Add(keyPointsTo[items[0].TrainIdx].Pt); goodMatches.Add(items[0]); Console.WriteLine($"{keyPointsSrc[items[0].QueryIdx].Pt.X}, {keyPointsSrc[items[0].QueryIdx].Pt.Y}"); } } var outMat = new Mat(); // 算法RANSAC對(duì)匹配的結(jié)果做過濾 var pSrc = pointsSrc.ConvertAll(Point2fToPoint2d); var pDst = pointsDst.ConvertAll(Point2fToPoint2d); var outMask = new Mat(); // 如果原始的匹配結(jié)果為空, 則跳過過濾步驟 if (pSrc.Count > 0 && pDst.Count > 0) Cv2.FindHomography(pSrc, pDst, HomographyMethods.Ransac, mask: outMask); // 如果通過RANSAC處理后的匹配點(diǎn)大于10個(gè),才應(yīng)用過濾. 否則使用原始的匹配點(diǎn)結(jié)果(匹配點(diǎn)過少的時(shí)候通過RANSAC處理后,可能會(huì)得到0個(gè)匹配點(diǎn)的結(jié)果). if (outMask.Rows > 10) { byte[] maskBytes = new byte[outMask.Rows * outMask.Cols]; outMask.GetArray(0, 0, maskBytes); Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, matchesMask: maskBytes, flags: DrawMatchesFlags.NotDrawSinglePoints); } else Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, flags: DrawMatchesFlags.NotDrawSinglePoints); return OpenCvSharp.Extensions.BitmapConverter.ToBitmap(outMat); } } }
SURF算法
public static Bitmap MatchPicBySurf(Bitmap imgSrc, Bitmap imgSub, double threshold = 400) { using (Mat matSrc = imgSrc.ToMat()) using (Mat matTo = imgSub.ToMat()) using (Mat matSrcRet = new Mat()) using (Mat matToRet = new Mat()) { KeyPoint[] keyPointsSrc, keyPointsTo; using (var surf = OpenCvSharp.XFeatures2D.SURF.Create(threshold,4,3,true,true)) { surf.DetectAndCompute(matSrc, null, out keyPointsSrc, matSrcRet); surf.DetectAndCompute(matTo, null, out keyPointsTo, matToRet); } using (var flnMatcher = new OpenCvSharp.FlannBasedMatcher()) { var matches = flnMatcher.Match(matSrcRet, matToRet); //求最小最大距離 double minDistance = 1000;//反向逼近 double maxDistance = 0; for (int i = 0; i < matSrcRet.Rows; i++) { double distance = matches[i].Distance; if (distance > maxDistance) { maxDistance = distance; } if (distance < minDistance) { minDistance = distance; } } Console.WriteLine($"max distance : {maxDistance}"); Console.WriteLine($"min distance : {minDistance}"); var pointsSrc = new List<Point2f>(); var pointsDst = new List<Point2f>(); //篩選較好的匹配點(diǎn) var goodMatches = new List<DMatch>(); for (int i = 0; i < matSrcRet.Rows; i++) { double distance = matches[i].Distance; if (distance < Math.Max(minDistance * 2, 0.02)) { pointsSrc.Add(keyPointsSrc[matches[i].QueryIdx].Pt); pointsDst.Add(keyPointsTo[matches[i].TrainIdx].Pt); //距離小于范圍的壓入新的DMatch goodMatches.Add(matches[i]); } } var outMat = new Mat(); // 算法RANSAC對(duì)匹配的結(jié)果做過濾 var pSrc = pointsSrc.ConvertAll(Point2fToPoint2d); var pDst = pointsDst.ConvertAll(Point2fToPoint2d); var outMask = new Mat(); // 如果原始的匹配結(jié)果為空, 則跳過過濾步驟 if (pSrc.Count > 0 && pDst.Count > 0) Cv2.FindHomography(pSrc, pDst, HomographyMethods.Ransac, mask: outMask); // 如果通過RANSAC處理后的匹配點(diǎn)大于10個(gè),才應(yīng)用過濾. 否則使用原始的匹配點(diǎn)結(jié)果(匹配點(diǎn)過少的時(shí)候通過RANSAC處理后,可能會(huì)得到0個(gè)匹配點(diǎn)的結(jié)果). if (outMask.Rows > 10) { byte[] maskBytes = new byte[outMask.Rows * outMask.Cols]; outMask.GetArray(0, 0, maskBytes); Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, matchesMask: maskBytes, flags: DrawMatchesFlags.NotDrawSinglePoints); } else Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, flags: DrawMatchesFlags.NotDrawSinglePoints); return OpenCvSharp.Extensions.BitmapConverter.ToBitmap(outMat); } } }
模板匹配
public static System.Drawing.Point FindPicFromImage(Bitmap imgSrc, Bitmap imgSub, double threshold = 0.9) { OpenCvSharp.Mat srcMat = null; OpenCvSharp.Mat dstMat = null; OpenCvSharp.OutputArray outArray = null; try { srcMat = imgSrc.ToMat(); dstMat = imgSub.ToMat(); outArray = OpenCvSharp.OutputArray.Create(srcMat); OpenCvSharp.Cv2.MatchTemplate(srcMat, dstMat, outArray, Common.templateMatchModes); double minValue, maxValue; OpenCvSharp.Point location, point; OpenCvSharp.Cv2.MinMaxLoc(OpenCvSharp.InputArray.Create(outArray.GetMat()), out minValue, out maxValue, out location, out point); Console.WriteLine(maxValue); if (maxValue >= threshold) return new System.Drawing.Point(point.X, point.Y); return System.Drawing.Point.Empty; } catch(Exception ex) { return System.Drawing.Point.Empty; } finally { if (srcMat != null) srcMat.Dispose(); if (dstMat != null) dstMat.Dispose(); if (outArray != null) outArray.Dispose(); } }
總結(jié)
以上所述是小編給大家介紹的C#中OpenCvSharp 通過特征點(diǎn)匹配圖片,希望對(duì)大家有所幫助,如果大家有任何疑問請(qǐng)給我留言,小編會(huì)及時(shí)回復(fù)大家的。在此也非常感謝大家對(duì)我們網(wǎng)站的支持!
如果你覺得本文對(duì)你有幫助,歡迎轉(zhuǎn)載,煩請(qǐng)注明出處,謝謝!
欄 目:C#教程
本文標(biāo)題:C#中OpenCvSharp 通過特征點(diǎn)匹配圖片的方法
本文地址:http://mengdiqiu.com.cn/a1/C_jiaocheng/4672.html
您可能感興趣的文章
- 01-10C#通過反射獲取當(dāng)前工程中所有窗體并打開的方法
- 01-10C#通過重寫Panel改變邊框顏色與寬度的方法
- 01-10C#實(shí)現(xiàn)Winform中打開網(wǎng)頁(yè)頁(yè)面的方法
- 01-10C#實(shí)現(xiàn)由四周向中心縮小的窗體退出特效
- 01-10Extjs4如何處理后臺(tái)json數(shù)據(jù)中日期和時(shí)間
- 01-10C#通過Semaphore類控制線程隊(duì)列的方法
- 01-10C#中DataGridView常用操作實(shí)例小結(jié)
- 01-10C#編程獲取資源文件中圖片的方法
- 01-10asp.net中XML如何做增刪改查操作
- 01-10C#利用反射技術(shù)實(shí)現(xiàn)去掉按鈕選中時(shí)的邊框效果


閱讀排行
- 1C語(yǔ)言 while語(yǔ)句的用法詳解
- 2java 實(shí)現(xiàn)簡(jiǎn)單圣誕樹的示例代碼(圣誕
- 3利用C語(yǔ)言實(shí)現(xiàn)“百馬百擔(dān)”問題方法
- 4C語(yǔ)言中計(jì)算正弦的相關(guān)函數(shù)總結(jié)
- 5c語(yǔ)言計(jì)算三角形面積代碼
- 6什么是 WSH(腳本宿主)的詳細(xì)解釋
- 7C++ 中隨機(jī)函數(shù)random函數(shù)的使用方法
- 8正則表達(dá)式匹配各種特殊字符
- 9C語(yǔ)言十進(jìn)制轉(zhuǎn)二進(jìn)制代碼實(shí)例
- 10C語(yǔ)言查找數(shù)組里數(shù)字重復(fù)次數(shù)的方法
本欄相關(guān)
- 01-10C#通過反射獲取當(dāng)前工程中所有窗體并
- 01-10關(guān)于ASP網(wǎng)頁(yè)無(wú)法打開的解決方案
- 01-10WinForm限制窗體不能移到屏幕外的方法
- 01-10WinForm繪制圓角的方法
- 01-10C#實(shí)現(xiàn)txt定位指定行完整實(shí)例
- 01-10WinForm實(shí)現(xiàn)仿視頻播放器左下角滾動(dòng)新
- 01-10C#停止線程的方法
- 01-10C#實(shí)現(xiàn)清空回收站的方法
- 01-10C#通過重寫Panel改變邊框顏色與寬度的
- 01-10C#實(shí)現(xiàn)讀取注冊(cè)表監(jiān)控當(dāng)前操作系統(tǒng)已
隨機(jī)閱讀
- 08-05織夢(mèng)dedecms什么時(shí)候用欄目交叉功能?
- 01-11Mac OSX 打開原生自帶讀寫NTFS功能(圖文
- 08-05DEDE織夢(mèng)data目錄下的sessions文件夾有什
- 08-05dedecms(織夢(mèng))副欄目數(shù)量限制代碼修改
- 01-10delphi制作wav文件的方法
- 01-10SublimeText編譯C開發(fā)環(huán)境設(shè)置
- 04-02jquery與jsp,用jquery
- 01-10C#中split用法實(shí)例總結(jié)
- 01-11ajax實(shí)現(xiàn)頁(yè)面的局部加載
- 01-10使用C語(yǔ)言求解撲克牌的順子及n個(gè)骰子